Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.478
Filtrar
1.
Food Res Int ; 184: 114246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609225

RESUMO

Food-derived mucins are glycoproteins rich in sialic acid, but their digestive properties and potential health benefits for humans have been scarcely investigated. In this work, ovomucin (OVM, rich in N-acetylneuraminic acid, about 3 %), porcine small intestinal mucin (PSIM, rich in N-glycolylneuraminic acid, about 1 %), the desialylated OVM (AOVM) and the desialylated PSIM (APSIM) were selected to examine their digestion and their impact on the gut microbiota of elderly individuals. The results shown that, the proportion of low-molecular-weight proteins increased after simulated digestion of these four mucins, with concomitant comparable antioxidant activity observed. Desialylation markedly increased the degradation and digestion rate of mucins. In vitro fecal fermentation was conducted with these mucins using fecal samples from individuals of different age groups: young, low-age and high-age elderly. Fecal fermentation with mucin digestive solution stimulated the production of organic acids in the group with fecal sample of the elderly individuals. Among them, the OVM group demonstrated the most favorable outcomes. The OVM and APSIM groups elevated the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while diminishing the presence of pathogenic bacteria such as Klebsiella. Conversely, the probiotic effects of AOVM and PSIM were attenuated or even exhibited adverse effects. Hence, mucins originating from different sources and possessing distinct glycosylation patterns exhibit diverse biological functions. Our findings can offer valuable insights for developing a well-balanced and nutritious diet tailored to the elderly population.


Assuntos
Microbioma Gastrointestinal , Mucinas , Humanos , Idoso , Animais , Suínos , Dieta , Alimentos , Bifidobacterium
2.
Microbiol Res ; 283: 127709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593579

RESUMO

Bifidobacterium longum subsp. infantis commonly colonizes the human gut and is capable of metabolizing L-fucose, which is abundant in the gut. Multiple studies have focused on the mechanisms of L-fucose utilization by B. longum subsp. infantis, but the regulatory pathways governing the expression of these catabolic processes are still unclear. In this study, we have conducted a structural and functional analysis of L-fucose metabolism transcription factor FucR derived from B. longum subsp. infantis Bi-26. Our results indicated that FucR is a L-fucose-sensitive repressor with more α-helices, fewer ß-sheets, and ß-turns. Transcriptional analysis revealed that FucR displays weak negative self-regulation, which is counteracted in the presence of L-fucose. Isothermal titration calorimetry indicated that FucR has a 2:1 stoichiometry with L-fucose. The key amino acid residues for FucR binding L-fucose are Asp280 and Arg331, with mutation of Asp280 to Ala resulting in a decrease in the affinity between FucR and L-fucose with the Kd value from 2.58 to 11.68 µM, and mutation of Arg331 to Ala abolishes the binding ability of FucR towards L-fucose. FucR specifically recognized and bound to a 20-bp incomplete palindrome sequence (5'-ACCCCAATTACGAAAATTTTT-3'), and the affinity of the L-fucose-loaded FucR for the DNA fragment was lower than apo-FucR. The results provided new insights into the regulating L-fucose metabolism by B. longum subsp. infantis.


Assuntos
Bifidobacterium longum , Bifidobacterium , Humanos , Bifidobacterium/genética , Bifidobacterium/metabolismo , Fucose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo dos Carboidratos , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo
3.
Cell Host Microbe ; 32(4): 573-587.e5, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569545

RESUMO

Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.


Assuntos
Fórmulas Infantis , Microbiota , Lactente , Feminino , Humanos , Fórmulas Infantis/microbiologia , Aleitamento Materno , Leite Humano , Bifidobacterium , Fezes/microbiologia , Oligossacarídeos/metabolismo , Ritmo Circadiano
4.
Cancer Immunol Immunother ; 73(5): 94, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564002

RESUMO

The advent of tumor immunotherapy in patients has revolutionized the treatment of tumors and significantly improved survival rates for a wide range of tumors. However, the full therapeutic potential of immune checkpoint inhibitors (ICIs) has yet to be realized, as not all patients have a lasting survival benefit from them, and a significant proportion of patients show primary or acquired resistance to immunotherapy. Bifidobacterium is one of the most common probiotics, and its antitumor and immunomodulatory effects have been demonstrated in recent years, but its immunomodulatory effects in tumors, especially on ICIs and in combination, have not been extensively studied in clinical practice, and its effects on the immune system and the mechanisms that modulate immunotherapy are largely unknown. Therefore, this review will focus on the immunomodulatory effects of Bifidobacteria in malignancies and the possible mechanisms of action of Bifidobacteria on immunotherapy in the hope of providing a basis for further research and better application of Bifidobacteria in clinical practice.


Assuntos
Imunomodulação , Imunoterapia , Humanos , Bifidobacterium , Inibidores de Checkpoint Imunológico
5.
Sci Rep ; 14(1): 7983, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575668

RESUMO

Dimension reduction has been used to visualise the distribution of multidimensional microbiome data, but the composite variables calculated by the dimension reduction methods have not been widely used to investigate the relationship of the human gut microbiome with lifestyle and disease. In the present study, we applied several dimension reduction methods, including principal component analysis, principal coordinate analysis (PCoA), non-metric multidimensional scaling (NMDS), and non-negative matrix factorization, to a microbiome dataset from 186 subjects with symptoms of  allergic rhinitis (AR) and 106 controls. All the dimension reduction methods supported that the distribution of microbial data points appeared to be continuous rather than discrete. Comparison of the composite variables calculated from the different dimension reduction methods showed that the characteristics of the composite variables differed depending on the distance matrices and the dimension reduction methods. The first composite variables calculated from PCoA and NMDS with the UniFrac distance were strongly associated with AR (FDR adjusted P = 2.4 × 10-4 for PCoA and P = 2.8 × 10-4 for NMDS), and also with the relative abundance of Bifidobacterium and Prevotella. The abundance of Bifidobacterium was also linked to intake of several nutrients, including carbohydrate, saturated fat, and alcohol via composite variables. Notably, the association between the composite variables and AR was much stronger than the association between the relative abundance of individual genera and AR. Our results highlight the usefulness of the dimension reduction methods for investigating the association of microbial composition with lifestyle and disease in clinical research.


Assuntos
Microbioma Gastrointestinal , Rinite Alérgica , Humanos , Bifidobacterium , Prevotella , Análise de Escalonamento Multidimensional
6.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530054

RESUMO

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Assuntos
Imunidade Inata , Microbiota , Lactente , Feminino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Leite Humano/química , Sistema Imunitário/metabolismo , Oligossacarídeos/análise , Bifidobacterium/genética
7.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542148

RESUMO

Bifidobacteria are probiotic microorganisms commonly found in the gastrointestinal tract, some of which are known to utilize linear arabino-oligosaccharides (AOS) as prebiotic carbohydrates. In general, the synergistic actions of exo-type α-l-arabinofuranosidases (ABFs) and endo-α-1,5-l-arabinanases (ABNs) are required for efficient arabinan degradation. In this study, the putative gene cluster for arabinan degradation was discovered in the genome of Bifidobacterium longum subsp. suis. It consists of a variety of genes encoding exo- and endo-hydrolases, sugar-binding proteins, ABC-binding cassettes, and transcriptional regulators. Among them, two endo-ABNs GH43 (BflsABN43A and BflsABN43B), two exo-ABFs GH43 (BflsABF43A and BflsABF43B), and an exo-ABF GH51 (BflsABF51) were predicted to be the key hydrolases for arabinan degradation. These hydrolase genes were functionally expressed in Escherichia coli, and their enzymatic properties were characterized. Their synergism in arabinan degradation has been proposed from the detailed modes of action. Extracellular endo-BflsABN43A hydrolyzes sugar beet and debranched arabinans into the short-chain branched and linear AOS. Intracellularly, AOS can be further degraded into l-arabinose via the cooperative actions of endo-BflsABN43B, exo-BflsABF43A with debranching activity, α-1,5-linkage-specific exo-BflsABF43B, and exo-BflsABF51 with dual activities. The resulting l-arabinose is expected to be metabolized into energy through the pentose phosphate pathway by three enzymes expressed from the ara operon of bifidobacteria. It is anticipated that uncovering arabinan utilization gene clusters and their detailed functions in the genomes of diverse microorganisms will facilitate the development of customized synbiotics.


Assuntos
Arabinose , Bifidobacterium , Polissacarídeos , Polissacarídeos/metabolismo , Família Multigênica , Oligossacarídeos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
8.
J Agric Food Chem ; 72(13): 7055-7073, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520351

RESUMO

Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bifidobacterium/metabolismo , Colo , Modelos Animais de Doenças , Bactérias , Inflamação , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL
9.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462851

RESUMO

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Camundongos , Lactobacillus , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , RNA Ribossômico 16S , Ácido Butírico , Bifidobacterium , Firmicutes , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
10.
Gut Microbes ; 16(1): 2300847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439565

RESUMO

Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.


Assuntos
Desoxiadenosinas , Microbioma Gastrointestinal , Doenças Metabólicas , Tionucleosídeos , Humanos , Metionina , Bifidobacterium , Racemetionina
11.
Gut Microbes ; 16(1): 2329147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528729

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by immune-mediated, chronic inflammation of the intestinal tract. The occurrence of IBD is driven by the complex interactions of multiple factors. The objective of this study was to evaluate the therapeutic effects of IAA in colitis. METHOD: C57/BL6 mice were administered 2.5% DSS in drinking water to induce colitis. IAA, Bifidobacterium pseudolongum, and R-equol were administered by oral gavage and fed a regular diet. The Disease Activity Index was used to evaluate disease activity. The degree of colitis was evaluated using histological morphology, RNA, and inflammation marker proteins. CD45+ CD4+ FOXP3+ Treg and CD45+ CD4+ IL17A+ Th17 cells were detected by flow cytometry. Analysis of the gut microbiome in fecal content was performed using 16S rRNA gene sequencing. Gut microbiome metabolites were analyzed using Untargeted Metabolomics. RESULT: In our study, we found IAA alleviates DSS-induced colitis in mice by altering the gut microbiome. The abundance of Bifidobacterium pseudolongum significantly increased in the IAA treatment group. Bifidobacterium pseudolongum ATCC25526 alleviates DSS-induced colitis by increasing the ratio of Foxp3+T cells in colon tissue. R-equol alleviates DSS-induced colitis by increasing Foxp3+T cells, which may be the mechanism by which ATCC25526 alleviates DSS-induced colitis in mice. CONCLUSION: Our study demonstrates that IAA, an indole derivative, alleviates DSS-induced colitis by promoting the production of Equol from Bifidobacterium pseudolongum, which provides new insights into gut homeostasis regulated by indole metabolites other than the classic AHR pathway.


Assuntos
Bifidobacterium , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Equol/metabolismo , Equol/farmacologia , Equol/uso terapêutico , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
12.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542727

RESUMO

Visceral fat accumulation is considered to be associated with a higher risk of chronic diseases. We investigated the effects of Bifidobacterium longum subsp. longum (B. longum) BB536 and Bifidobacterium breve (B. breve) MCC1274 on body composition, including visceral fat, in a randomized, parallel-group, placebo-controlled study. Participants were between 29 and 64 years of age and had a body mass index (BMI) of greater than 23 and less than 30. One hundred participants were randomly assigned to the probiotics group or placebo group. Participants were administered probiotic capsules containing 1 × 1010 colony-forming units (CFUs) of B. longum BB536 and 5 × 109 CFU of B. breve MCC1274 or placebo capsules without bifidobacteria for 16 weeks. In the probiotics group, abdominal visceral fat area, total abdominal fat area, and serum triglyceride levels were significantly decreased compared to those in the placebo group. Additionally, the increase in BMI observed in the placebo group was significantly suppressed in the probiotics group. This study showed that B. longum BB536 and B. breve MCC1274 reduced abdominal visceral fat and total fat levels in healthy normal and overweight adults, suggesting their beneficial effects on body composition.


Assuntos
Bifidobacterium breve , Bifidobacterium longum , Bifidobacterium , Probióticos , Adulto , Humanos , Sobrepeso/terapia , Composição Corporal
13.
Microbiome ; 12(1): 60, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515179

RESUMO

BACKGROUND: The gut microbiota is recognized as a regulator of brain development and behavioral outcomes during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent among studies in humans, perhaps because many host-microbe relationships vary widely between individuals. This study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut microbiome cluster-specific associations between the stool metabolomic pathways and child behavioral outcomes. METHODS: Stool samples were collected from a community sample of 248 typically developing children (3-5 years). The gut microbiota was analyzed using 16S sequencing while LC-MS/MS was used for untargeted metabolomics. Parent-reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Developmental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC-2). Children were grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences in the metabolome and behavioral outcomes were investigated. RESULTS: Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium abundance (Bif), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated with lower Social Skill scores in a cluster-dependent manner. Finally, cluster Ba2 had increased levels of compounds involved in Galactose metabolism (i.e., stachyose, raffinose, alpha-D-glucose), where alpha-D-glucose was associated with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster-dependent manner. CONCLUSIONS: These data show novel associations between the gut microbiota, its metabolites, and behavioral outcomes in typically developing preschool-aged children. Our results support the concept that cluster-based groupings could be used to develop more personalized interventions to support child behavioral outcomes. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Pré-Escolar , Humanos , Bifidobacterium/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Glucose , Metaboloma , Metabolômica/métodos , RNA Ribossômico 16S , Espectrometria de Massas em Tandem
14.
mSystems ; 9(3): e0102723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421203

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major public health problem due to the high incidence affecting approximately one-third of the world's population. NAFLD is usually linked to obesity and excessive weight. A subset of patients with NAFLD expresses normal or low body mass index; thus, the condition is called non-obese NAFLD or lean NAFLD. However, patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. Furthermore, preclinical results from non-obese animal models with NAFLD are unclear. Gut microbiota and their metabolites in non-obese/lean-NAFLD patients differ from those in obese NAFLD patients. Therefore, we analyzed the biochemical indices, intestinal flora, and intestinal metabolites in a non-obese NAFLD mouse model established using a methionine-choline-deficient (MCD) diet. The significantly lean MCD mice had a remarkable fatty liver with lower serum triglyceride and free fatty acid levels, as well as higher alanine transaminase and aspartate transaminase levels than normal mice. 16S RNA sequencing of fecal DNA showed that the overall richness and diversity of the intestinal flora decreased in MCD mice, whereas the Firmicutes:Bacteroidota ratio was increased. g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium were the predominant species in non-obese NAFLD mice. Fecal metabolomics using liquid chromatography-tandem mass spectrometry revealed the potential biomarkers for the prognosis and diagnosis of non-obese NAFLD, including high levels of tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, and low levels of 3-carbamoyl-2-phenylpropionaldehyde, N-succinyl-L,L-2,6-diaminopimelate, 4-methyl-5-thiazoleethanol, homogentisic acid, and estriol. Our findings could be useful to identify and develop drugs to treat non-obese NAFLD and lean NAFLD. IMPORTANCE: Patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. In fact, about 40% of people with NAFLD worldwide are non-obese, and nearly one-fifth are lean. Lean NAFLD unfortunately may be unnoticed for years and remains undetected until hepatic damage is advanced and the prognosis is compromised. This study focused on the lean NAFLD, screened therapeutic agents, and biomarkers for the prognosis and diagnosis using MCD-induced male C57BL/6J mice. The metabolites tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, together with the predominant flora including g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium, were specific in non-obese NAFLD mice and might be used as targets for non-obese NAFLD drug exploration. This study is particularly significant for non-obese NAFLDs that need to be more actively noticed and vigilant.


Assuntos
Bifidobacterium , Firmicutes , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Panteteína/análogos & derivados , Tiramina/análogos & derivados , Humanos , Animais , Camundongos , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Obesidade/complicações , Biomarcadores , Colina , Fosfatos
15.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337627

RESUMO

Proton pump inhibitors (PPIs) are currently routinely used for the treatment of reflux esophagitis (RE); however, with frequent symptom recurrence after discontinuation and limited clinical improvement in accompanying gastrointestinal symptoms. This study aims to explore the adjuvant therapeutic effect of Bifidobacterium supplement for RE patients. A total of 110 eligible RE patients were recruited and randomly assigned to the placebo and probiotic groups. All patients were treated with rabeprazole tablets and simultaneously received either Bifidobacterium animalis subsp. lactis MH-02 or placebo for 8 weeks. Patients who achieved clinical remission then entered the next 12 weeks of follow-up. RDQ, GSRS scores, and endoscopy were performed to assess clinical improvement, and changes in intestinal microbiota were analyzed with high-throughput sequencing. Our results revealed that MH-02 combined therapy demonstrated an earlier time to symptom resolution (50.98% vs. 30.61%, p = 0.044), a significant reduction in the GSRS score (p = 0.0007), and a longer mean time to relapse (p = 0.0013). In addition, high-throughput analyses showed that MH-02 combined therapy increased the α (p = 0.001) diversity of gut microbiota and altered microbial composition by beta diversity analysis, accompanied with significantly altered gut microbiota taxa at the genus level, where the abundance of some microbial genera including Bifidobacterium, Clostridium, and Blautia were increased, while the relative abundance of Streptococcus and Rothia were decreased (p < 0.05). Collectively, these results support the beneficial effects of MH-02 as a novel complementary strategy in RE routine treatment.


Assuntos
Bifidobacterium animalis , Esofagite Péptica , Probióticos , Humanos , Bifidobacterium , Inibidores da Bomba de Prótons/uso terapêutico , Método Duplo-Cego
16.
Medicine (Baltimore) ; 103(5): e36493, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306556

RESUMO

Recent studies have shown that gut microbiota is associated with coronavirus disease 2019 (COVID-19). However, the causal impact of the gut microbiota on COVID-19 remains unclear. We performed a bidirectional Mendelian randomization. The summary statistics on the gut microbiota from the MiBioGen consortium. Summary statistics for COVID-19 were obtained from the 6th round of the COVID-19 Host Genetics Initiative genome-wide association study meta-analysis. Inverse variance weighting was used as the main method to test the causal relationship between gut microbiota and COVID-19. Reverse Mendelian randomization analysis was performed. Mendelian randomization analysis showed that Intestinimas.id.2062 was associated with an increased risk of severe COVID-19. Bifidobacterium.id.436, LachnospiraceaeUCG010.id.11330, RikenellaceaeRC9gutgroup.id.11191 increase the risk of hospitalized COVID-19. RuminococcaceaeUCG014.id.11371 shows the positive protection on hospitalized COVID-19. There is no causal relationship between gut microbiota and infection with COVID-19. According to the results of reverse Mendelian randomization analysis, no significant causal effect of COVID-19 on gut microbiota was found. The study found that gut microbiota with COVID-19 has a causal relationship. This study provides a basis for the theory of the gut-lung axis. Further randomized controlled trials are needed to clarify the protective effect of probiotics against COVID-19 and the specific protective mechanisms. This study has important implications for gut microbiota as a nondrug intervention for COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Bifidobacterium/genética
17.
Appl Microbiol Biotechnol ; 108(1): 199, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324037

RESUMO

L-Arabinofuranosides with ß-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a ß-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 ß-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-ß1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-ß1,3-Araf structures but not those containing Araf-ß1,2-Araf and Araf-ß1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two ß-sandwich domains. A hairpin structure with two ß-strands was observed in Bll3HypBA1, to extend from a ß-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a ß1,3-specific ß-L-arabinofuranosidase. KEY POINTS: • ß1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • ß-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a ß1,3-linkage-specific ß-l-arabinofuranosidase.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Catálise , Cisteína
18.
J Sci Food Agric ; 104(7): 4165-4175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299445

RESUMO

BACKGROUND: Neonatal feces are one of the most important sources for probiotic isolation. The purpose of this study was the isolation and identification of Bifidobacterium spp. from neonatal feces and the evaluation of in vitro probiotic properties of strains including safety tests. RESULTS: A total of 40 isolates were obtained from 14 healthy newborns' feces in Erzurum province, Türkiye. By their rep-PCR patterns and 16S rRNA gene sequences, isolates were identified as 26 Bifidobacterium breve and 14 Bifidobacterium longum. Fifteen of the isolates tolerated bile salts and showed high resistance to simulated gastric juice. Isolates exhibited varying rates of auto-aggregation and hydrophobicity. In addition, most of the isolates displayed antibacterial activity against Escherichia coli O157:H7, Staphylococcus aureus ATCC 29213, Salmonella Typhimurium RSHMB 95091, and Pseudomonas aeruginosa ATCC 9027. However, only one strain showed bile salt hydrolase activity and two strains showed the ability to produce H2O2. Bifidobacterium strains were generally sensitive to the tested antibiotics and lacked kanamycin, gentamicin, and streptomycin resistance genes, and hemolytic and DNAse activities. On the other hand, it was determined that five strains had various virulence genes including gelE, esp, efaAfs, hyl, and ace. CONCLUSION: Results of the present study suggested that B. longum BH28, B. breve BH4 and B. breve BH5 strains have the potential as probiotic candidates for further studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bifidobacterium , Probióticos , Recém-Nascido , Humanos , RNA Ribossômico 16S/genética , Peróxido de Hidrogênio , Turquia , Fezes/microbiologia , Antibacterianos/farmacologia
19.
mSystems ; 9(3): e0071523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38363147

RESUMO

Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.


Assuntos
Fucose , Leite Humano , Lactente , Feminino , Humanos , Leite Humano/química , Fucose/análise , Lactose/análise , Oligossacarídeos/análise , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/metabolismo , Acetatos/análise , Carbono/análise , Lactatos/análise
20.
Microbiome ; 12(1): 19, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310316

RESUMO

BACKGROUND: Infant gut microbiota is highly malleable, but the long-term longitudinal impact of antibiotic exposure in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied. METHODS: Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no-antibiotic in the first 4 days of life, C-section/no-antibiotic in the first 4 days of life, and C-section/antibiotic exposed in first 4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort's first week of life. RESULTS: Newborn gut microbial composition differed in all three groups, with higher diversity and stable composition seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the C-section/antibiotic-exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/no-antibiotic while Proteobacteria was higher in C-section/antibiotic-exposed infants. Strains from species belonging to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacterium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant in the vaginal delivery/no-antibiotic group, with species Bacteroides ovatus and Phocaeicola vulgatus found to be persistent colonisers in the no-antibiotic groups. Most strains carrying antibiotic-resistance genes belonged to phyla Proteobacteria and Firmicutes, with the C-section/antibiotic-exposed group presenting a higher frequency of antibiotic-resistance genes (ARGs). CONCLUSION: These data show that antibiotic exposure has an immediate and persistent effect on the gut microbiome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were multiple drug-resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures-leading to what can be an extensive and diverse resistome. Video Abstract.


Assuntos
Antibacterianos , Gentamicinas , Humanos , Recém-Nascido , Lactente , Gravidez , Feminino , Antibacterianos/efeitos adversos , Penicilina G , Cesárea , Bifidobacterium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...